Natal sedia maior evento de Física da America Latina

Em 2016, pela primeira vez na história do Brasil, o maior evento periódico de Física da America Latina foi realizada na região Nordeste do Brasil, em Natal–RN.  O Encontro de Física 2016, que ocorreu  durante os dias 3–7 de Setembro de 2016, contou com mais de 2.400 participantes.  O evento ajudou a movimentar na cidade de Natal mais de dois milhões de reais.

A Sociedade Brasileira de Física (SBF) tradicionalmente realiza periodicamente os seguintes eventos oficiais: o Encontro de Pesquisa em Ensino de Física, o Encontro Nacional de Física da Matéria Condensada, o Encontro Nacional de Física de Partículas e Campos, o Reunião de Trabalho sobre Física Nuclear no Brasil, e o Encontro Brasileiro de Física dos Plasmas. Mas em 2016, esses eventos todos foram realizados conjuntamente como parte do Encontro de Física 2016, para comemorar o cinquentenário da SBF.

O evento foi um grande sucesso. Em nome do comitê local da organização do evento, venho registrar aqui grande satisfação e profunda gratidão à Sociedade Brasileira de Física pelo voto de confiânça por realizar o evento em Natal. Agradecemos também o Professor Carlos Chesman da UFRN pelo seu papel fundamental junto à SBF em tomar a iniciativa para trazer o maior evento da America Latina para Natal.

Foi realizado também, durante este período, a cermônia de entrega do título de Doutor Honoris Causa, pela UFRN, ao Professor H. Eugene Stanley.

Seguem abaixo vídeos relacionados ao evento.

Primeiro Dia

Segundo Dia

Terceiro Dia

THE PHYSICS OF LIVING MATTER
Paul Davies (Arizona State University)

 

Entrega do título de Doutor Honoris Causa ao Professor H. Eugene Stanley:

Advertisements

6 responses to “Natal sedia maior evento de Física da America Latina

  1. Marilyn F. Bishop

    Dear Dr. Viswanathan,
    I read your paper, “The hypergeometric series for the
    partition function of the 2D Ising model”, and I decided to try using Mathematica to calculate the partition function for the 2D Ising model using the generalized hypergeometric function. However, it seems to be having trouble in the range of K=0.1 to 1.6. The hypergeometric function is coming out complex. Have you tried using Mathematica to calculate these functions, and have you had similar problems? I was thinking of notifying the Mathematica people to fix this, but I thought I should check with you first. I was able to do the one-dimensional integral numerically, and it doesn’t seem to have anything strange. The integrand seems very well behaved in this region.
    Thank you very much for your help.
    Sincerely,
    Marilyn F. Bishop
    Department of Physics
    Virginia Commonwealth University

    • Check if the series expansion of your function is correct. If you are unable to reproduce the known series expansion, then there is some error.

      • Marilyn F. Bishop

        Dr. Dr. Viswanathan,
        I was simply using your Theorem I from
        G M Viswanathan, The hypergeometric series for the
        partition function of the 2D Ising model, J. Stat. Mech.(2015) P07004.
        That Theorem relates ln lambda to the 4F3[{1,1,3/2,3/2},{2,2,2}:16 kappa^2] , where previously this was expressed in terms of an integral. The hypergeometric function is giving complex values for a range of values of kappa. However, if I calculate the integral version of ln lambda, I get real numbers for the entire range of kappa values. I was wondering if Mathematica is calculating the generalized hypergeometric function incorrectly. Have you ever used Mathermatica to calculate these functions, and have you found it to produce incorrect results?
        Sincerely,
        Marilyn F. Bishop
        Department of Physics
        Virginia Commonwealth University

  2. There is a singularity at kappa=1/4 (the critical point). See Eq (8) of my paper, for example. So for kappa larger than 1/4 Mathematica may try to find the analytic continuation, which would explain the complex numbers.

    • Marilyn F. Bishop

      Dear Dr. Viswanathan,
      You’re right! For all values above kappa=0.25, the function becomes complex. This, however, does not seem very satisfactory for a partition function! Does this mean that Mathematica is using the wrong procedure for calculating this function? Since this generalized hypergeometric function is supposed to be equal to an integral that is real for all values of kappa, why would they be trying to find the analytic continuation, rather than getting a real number?
      Sincerely,
      Marilyn F. Bishop
      Department of Physics
      Virginia Commonwealth University

  3. Remember that as the physical temperature varies from 0 to infinity, kappa varies from 0 to 1/4 and back to 0, due to way that kappa is defined in terms of the hyperbolic functions of the temperature variable beta. So kappa>1/4 does not correspond to physical temperatures in the usual range from zero to infinity. Moreover, pFq generalized hypergeometric functions that have p=q+1 have radius of convergence of 1. The radius of convergence is reached exactly when kappa=1/4 because then 16kappa^2= 1.

Leave a Reply

Fill in your details below or click an icon to log in:

WordPress.com Logo

You are commenting using your WordPress.com account. Log Out /  Change )

Google+ photo

You are commenting using your Google+ account. Log Out /  Change )

Twitter picture

You are commenting using your Twitter account. Log Out /  Change )

Facebook photo

You are commenting using your Facebook account. Log Out /  Change )

Connecting to %s